

Transverse Charge Densities of N* Resonances

Lothar Tiator und Marc Vanderhaeghen

MENU Williamsburg, VA, May 31 - June 4, 2010

traditional method to obtain charge densities e.g. for nuclei A>>1 by Fourier Transformation of form factors in the Breit-Frame

$$\rho(\vec{r}) = \int \frac{d^3Q}{(2\pi)^3} e^{-i\vec{Q}\cdot\vec{r}} F(Q^2)$$
spherical charge density
$$= \int_0^\infty \frac{dQ}{2\pi^2} Q^2 j_0(Qr) F(Q^2)$$
form factor
in the Breit frame
Bessel function

interpretation of FF as quark density

overlap of wave function Fock components with same number of quarks

interpretation as probability/charge density

overlap of wave function Fock components with different number of constituents

NO probability/charge density interpretation

absent in a LIGHT-FRONT frame !

$$q^+ = q^0 + q^3 = 0$$

quark transverse charge densities in the nucleon light-front q_{\perp} $q^+ = q^0 + q^3 = 0$ $Q^2 \equiv \vec{q}^2$ $p_{z} \rightarrow \infty$ photon only couples to forward moving quarks $\rho(b_{\perp})$ quark charge density operator $J^+ \equiv J^0 + J^3 = \bar{q}\gamma^+ q = 2 q^{\dagger}_+ q_+, \text{ with } q_+ \equiv \frac{1}{4}\gamma^- \gamma^+ q$ 0 \boldsymbol{b}_{\perp} longitudinally polarized nucleon \bigstar $\rho_0^N(\vec{b}) \equiv \int \frac{d^2 \vec{q}_\perp}{(2\pi)^2} e^{-i \vec{q}_\perp \cdot \vec{b}} \frac{1}{2P^+} \langle P^+, \frac{\vec{q}_\perp}{2}, \lambda \, | \, J^+(0) \, | \, P^+, -\frac{\vec{q}_\perp}{2}, \lambda \rangle$ $= \int_0^\infty \frac{dQ}{2\pi} Q J_0(bQ) F_1(Q^2)$

G.A. Miller, PRL 99 (2007)

quark transverse charge densities in the nucleon

***** transversely polarized nucleon

transverse spin $\vec{S}_{\perp} = \cos \phi_S \hat{e}_x + \sin \phi_S \hat{e}_y$

e.g. along x-axis : $\phi_S=0$

$$\vec{b} = b \, \left(\cos \phi_b \, \hat{e}_x \, + \, \sin \phi_b \, \hat{e}_y \right)$$

$$\rho_T^N(\vec{b}) \equiv \int \frac{d^2 \vec{q}_\perp}{(2\pi)^2} e^{-i\vec{q}_\perp \cdot \vec{b}} \frac{1}{2P^+} \langle P^+, \frac{\vec{q}_\perp}{2}, s_\perp = +\frac{1}{2} | J^+(0) | P^+, -\frac{\vec{q}_\perp}{2}, s_\perp = +\frac{1}{2} \rangle$$

$$= \rho_0^N(b) + \sin(\phi_b - \phi_S) \int_0^\infty \frac{dQ}{2\pi} \frac{Q^2}{2M_N} J_1(bQ) F_2(Q^2)$$

Carlson, Vanderhaeghen, PRL 100 (2008)

dipole field pattern

 b_v [fm]

1.5

1

0

0.5

-0.5

-1

-1.5

 b_{v} [fm]

1.5

1

Û

0.5

-0.5

-1

-1.5

Quark transverse densities in A(1232)

$\gamma^*\Delta\Delta$ vertex

$$\begin{split} \langle \Delta(p',\lambda') \,|\, J^{\mu}(0) \,|\, \Delta(p,\lambda) \rangle \\ &= -\bar{u}_{\alpha}(p',\lambda') \left\{ \left[F_{1}^{*}(Q^{2})g^{\alpha\beta} + F_{3}^{*}(Q^{2})\frac{q^{\alpha}q^{\beta}}{(2M_{\Delta})^{2}} \right] \gamma^{\mu} \right. \\ &\left. + \left[F_{2}^{*}(Q^{2})g^{\alpha\beta} + F_{4}^{*}(Q^{2})\frac{q^{\alpha}q^{\beta}}{(2M_{\Delta})^{2}} \right] \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{\Delta}} \right\} u_{\beta}(p,\lambda) \end{split}$$

multipole transitions

these elastic form factors cannot be measured !

E2

full QCD lattice calculations

E0

M1

lattice analysis :

Alexandrou, Korzec, Koutsou, Leontiou, Lorcé, Negele, Pascalutsa, Tspalis, Vanderhaeghen, PRD 79, 014507 (2009)

$$\rho_{Ts_{\perp}}^{\Delta}(\vec{b}) \equiv \int \frac{d^{2}\vec{q}_{\perp}}{(2\pi)^{2}} e^{-i\vec{q}_{\perp}\cdot\vec{b}} \frac{1}{2P^{+}} \langle P^{+}, \frac{\vec{q}_{\perp}}{2}, s_{\perp} | J^{+}(0) | P^{+}, -\frac{\vec{q}_{\perp}}{2}, s_{\perp} \rangle$$

$$\begin{split} \rho_{T\frac{3}{2}}^{\Delta}(\vec{b}) &= \int_{0}^{+\infty} \frac{dQ}{2\pi} Q \quad \left[\begin{array}{cc} J_{0}(Qb) \frac{1}{4} \left(A_{\frac{3}{2}\frac{3}{2}} + 3A_{\frac{1}{2}\frac{1}{2}} \right) & \text{monopole} \\ &- \sin(\phi_{b} - \phi_{S}) J_{1}(Qb) \frac{1}{4} \left(2\sqrt{3}A_{\frac{3}{2}\frac{1}{2}} + 3A_{\frac{1}{2}-\frac{1}{2}} \right) & \text{dipole} \\ &- \cos[2(\phi_{b} - \phi_{S})] J_{2}(Qb) \frac{\sqrt{3}}{2}A_{\frac{3}{2}-\frac{1}{2}} & \text{quadrupole} \\ &+ \sin[3(\phi_{b} - \phi_{S})] J_{3}(Qb) \frac{1}{4}A_{\frac{3}{2}-\frac{3}{2}} \right] & \text{octupole} \end{split}$$

transverse transition charge densities for

$N \rightarrow \Delta$ (1232), $P_{11}(1440)$, $S_{11}(1535)$, $D_{13}(1520)$

transition form factors from electroproduction of π , η , $\pi\pi$, ...

in general:

transition form factors can only be obtained by

- partial wave analysis, e.g. MAID, JLab separate S₁₁, P₁₁, P₃₃, D₁₃, F₁₅, etc from angular distributions
- and background / resonance separation separate bg and res parts in each partial wave

MAID results are available for the dominant resonances of the proton

	isospin	spin	form factors
P ₃₃ (1232)	3/2	3/2	G _E , G _M , G _C
P ₁₁ (1440)	1/2	1/2	G _M , G _C
D ₁₃ (1520)	1/2	3/2	G_E, G_M, G_C
S ₁₁ (1535)	1/2	1/2	G _E , G _C
F ₁₅ (1680)	1/2	5/2	G_E, G_M, G_C

empirical transverse transition densities for N -> Δ excitation

$$\langle P^+, \frac{\vec{q}_{\perp}}{2}, \lambda_{\Delta} | J^+(0) | P^+, -\frac{\vec{q}_{\perp}}{2}, \lambda_N \rangle$$

= $(2P^+)e^{i(\lambda_N - \lambda_{\Delta})\phi_q} G^+_{\lambda_{\Delta} \lambda_N}(Q^2)$

data : MAID 2007

$$\rho_{T}^{N\Delta}(\vec{b}) \equiv \int \frac{d^{2}\vec{q}_{\perp}}{(2\pi)^{2}} e^{-i\vec{q}_{\perp}\cdot\vec{b}} \frac{1}{2P^{+}} \langle P^{+}, \frac{\vec{q}_{\perp}}{2}, s_{\perp}^{\Delta} = +\frac{1}{2} | J^{+}(0) | P^{+}, -\frac{\vec{q}_{\perp}}{2}, s_{\perp}^{N} = +\frac{1}{2} \rangle$$

$$= \int_{0}^{\infty} \frac{dQ}{2\pi} \frac{Q}{2} \left\{ J_{0}(bQ) G^{+}_{+\frac{1}{2}+\frac{1}{2}} \longrightarrow \text{monopole} \right.$$

$$-\sin(\phi_{b} - \phi_{S}) J_{1}(bQ) \left[\sqrt{3}G^{+}_{+\frac{3}{2}+\frac{1}{2}} + G^{+}_{+\frac{1}{2}-\frac{1}{2}} \right] \longrightarrow \text{dipole}$$

$$-\cos 2(\phi_{b} - \phi_{S}) J_{2}(bQ) \sqrt{3}G^{+}_{+\frac{3}{2}-\frac{1}{2}} \right\} \longrightarrow \text{quadrupole}$$

IOHANNEL GUTENBERG

empirical e.m. transition FFs for N -> N*(1440) excitation

L.T., M. Vanderhaeghen, Phys. Lett. B 672 (2009) 344

transverse transition densities

for the Nucleon and N -> Roper excitation

and for p -> D13(1520) excitations

transverse transition densities for

p → S₁₁(1535)

p -> D₁₃(1520)

Summary and Conclusions

Transverse charge densities give us a new view of the nucleon and nucleon resonances

with N->N* transition form factors obtained from the MAID analysis with mosty JLab data we can visualize quark transition charge densities for the Delta, Roper, S11 and D13 resonances

furthermore, with elastic N* form factors obtained from Lattice QCD we can even visualize quark charge densities for resonances themselves, e.g. Delta and soon probably also for Roper and S11